Vitenskapelig artikkel om objekt detektering
Capia har publisert en artikkel i det vitenskapelige tidsskriftet Algorithms om praktisk anvendelse av objekt detektering. Vi har analysert et unikt datasett som består av bilder av døgnhvileplasser for lastebiler i Nord-Skandinavia, der mørketid, kulde og snøforholdene gir spesielle utfordringer. Vi trente en modell basert på YOLOv5-algoritmen for å oppdage frontkabinen og baksiden av lastebiler, og har sammenlignet den med en out-of-the-box YOLOv5-modell som oppdager lastebiler. De oppnådde resultatene viser en forbedring i å oppdage lastebiler ved hjelp av front og bak i stedet for hele kjøretøyet, til tross for de utfordrende bildene med et høyt antall overlappinger og avskjæringer.
Følg lenken for å lese hele artikkelen.
Abstract:
The proper planning of rest periods in response to the availability of parking spaces at rest areas is an important issue for haulage companies as well as traffic and road administrations. We present a case study of how You Only Look Once (YOLO)v5 can be implemented to detect heavy goods vehicles at rest areas during winter to allow for the real-time prediction of parking spot occupancy. Snowy conditions and the polar night in winter typically pose some challenges for image recognition, hence we use thermal network cameras. As these images typically have a high number of overlaps and cut-offs of vehicles, we applied transfer learning to YOLOv5 to investigate whether the front cabin and the rear are suitable features for heavy goods vehicle recognition. Our results show that the trained algorithm can detect the front cabin of heavy goods vehicles with high confidence, while detecting the rear seems more difficult, especially when located far away from the camera. In conclusion, we firstly show an improvement in detecting heavy goods vehicles using their front and rear instead of the whole vehicle, when winter conditions result in challenging images with a high number of overlaps and cut-offs, and secondly, we show thermal network imaging to be promising in vehicle detection.
Kasper-Eulaers, M.; Hahn, N.; Berger, S.; Sebulonsen, T.; Myrland, Ø.; Kummervold, P.E. Short Communication: Detecting Heavy Goods Vehicles in Rest Areas in Winter Conditions Using YOLOv5. Algorithms 2021, 14, 114. https://doi.org/10.3390/a14040114